Best clinical practice for prevention of radial artery occlusion after transradial intervention

Samir B. Pancholy, MD, FSCAI
Professor of Medicine
Geisinger Commonwealth School of Medicine
The Wright Center for Graduate Medical Education
Scranton, PA
Disclosures

• Speaker: Terumo, Medtronic
• Equity: VasolInnovations, Inc.
RAO Happens !!!!!!

2015 PubMed RAO Rates

![Graph showing RAO incidence rates from various studies.

- Rotterdam: 0.039
- AIULAR: 0.089
- Ehris et al.: 0.149
- HANGAR: 0.092
- Degirmenci et al.: 0.055
- Halebi et al.: 14%

Mean Reported RAO Incidence: 0.092

RAO Incidence

Proprietary and Confidential
Mechanism of RAO

- Thrombosis (acute)
- Rapid organization with fibrotic lumen obliteration
Mechanism of RAO
RAO: Flow cessation

Sanmartin et al CCI 2007; 70: 185-9
Patent Hemostasis

Incidence of Radial Artery Occlusion

- Traditional Hold (Group I)
 - Early occlusion (24h): n=27, P<0.05
 - Persistent occlusion (30d): n=11

- Patent hemostasis (Group II)
 - Early occlusion (24h): n=16, P<0.05
 - Persistent occlusion (30d): n=4

VII ЕЖЕГОДНЫЙ ТРАНСРАДИАЛЬНЫЙ ЭНДОВАСКУЛЯРНЫЙ КУРС / VII TRANSRADIAL COURSE TREC-2020
TABLE III. Results of the Study Population

<table>
<thead>
<tr>
<th></th>
<th>Group A (MAP)</th>
<th>Group B (15 cm³)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression time (min)</td>
<td>208.8 ± 133.6</td>
<td>203.2 ± 54.8</td>
<td>0.60</td>
</tr>
<tr>
<td>Control postprocedural (days)</td>
<td>1.9 ± 3.2</td>
<td>1.78 ± 2.0</td>
<td>0.48</td>
</tr>
<tr>
<td>Vascular access complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1</td>
</tr>
<tr>
<td>Minor: Total hematoma (%)</td>
<td>25 (14.2)</td>
<td>22 (12.6)</td>
<td>0.65</td>
</tr>
<tr>
<td>Large hematoma (%) (>6 cm)</td>
<td>3 (17.7)</td>
<td>1 (0.6)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mild hematoma (%) (<6 cm)</td>
<td>22 (12.5)</td>
<td>21 (12.0)</td>
<td>0.85</td>
</tr>
<tr>
<td>Re-bleeding (%)</td>
<td>3 (1.7)</td>
<td>5 (2.8)</td>
<td>0.42</td>
</tr>
<tr>
<td>Radial occlusion (%)</td>
<td>2 (1.1)</td>
<td>21 (12.0)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

MAP, mean artery pressure.
Patent Hemostasis Efficacy Corroborated

ACS Cohort from UK

Wilson SJ et al Int J Cardiol 2017

Cohort from Iran

Figure 1: Patent hemostasis leads to a significant decrease in the incidence of radial artery occlusion at 24-h and 7-day follow-up.
Patency = Pressure * Duration

Compression

BP + Wall stress
Duration of compression

Radial artery occlusion

<table>
<thead>
<tr>
<th>Group</th>
<th>ERAO</th>
<th>CRAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>12</td>
<td>8.5</td>
</tr>
<tr>
<td>Group II</td>
<td>5.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* P < 0.02
** P < 0.03

Pancholy S, Patel T, CCI 2010
CRASOC

![Graph 1: RAO nurses (observed and binomial confidence interval).](image1.png)

![Graph 2: RAO Doppler (observed and binomial confidence interval).](image2.png)

Figure 2. RAO nurses (observed and binomial confidence interval).

Figure 3. RAO Doppler (observed and binomial confidence interval).

Dangoisse V et al Am J Cardiol 2017
Decreasing Pressure and Duration of Compression
Decrease RAO

Figure 2. RAO nurses (observed and binomial confidence interval).

Figure 3. RAO Doppler (observed and binomial confidence interval).

Dangoisse V et al Am J Cardiol 2017
CRASOC

BUT INCREASES REBOUND BLEEDING

Figure 5. Rebleeding/recompression (observed and binomial confidence interval).
RAP AND BEAT

VII ЕЖЕГОДНЫЙ ТРАНСРАДИАЛЬНЫЙ ЭНДОВАСКУЛЯРНЫЙ КУРС / VII TRANSRADIAL COURSE TREC-2020
Beware of Rebound Bleeding

Table 3: Procedural Outcomes

<table>
<thead>
<tr>
<th></th>
<th>TR Band</th>
<th>TRB + PTFEP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to TRB deflation (mean ± SD)</td>
<td>160 ± 43</td>
<td>43 ± 14</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>N=67</td>
<td>N=63</td>
<td></td>
</tr>
<tr>
<td>Time to discharge* (mean ± SD)</td>
<td>201 ± 55</td>
<td>150 ± 83</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>N=61</td>
<td>N=57</td>
<td></td>
</tr>
</tbody>
</table>

* Patients presenting for outpatient catheterization and discharged the same day.

Table 4: Clinical outcomes

Hematoma classification from Bertrand (8)

Outcome	TR Band	TRB + PTFEP	P-value
	N=67	N=69	
Major hematoma	0 (10.3%)	6 (17.1%)	0.20
Grade I (0-1cm)	8	12	0.68
Grade II (2-5cm)	1	4	0.37
Radial artery occlusion	0	0	0.50
Table 3:
Procedural Outcomes

<table>
<thead>
<tr>
<th></th>
<th>TR Band</th>
<th>TRB-PRUF</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to TRB deflation (mean ± SD)</td>
<td>160 ± 43</td>
<td>48 ± 14</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>N=87</td>
<td>N=82</td>
<td></td>
</tr>
<tr>
<td>Time to discharge* (mean ± SD)</td>
<td>201 ± 55</td>
<td>150 ± 63</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>N=61</td>
<td>N=57</td>
<td></td>
</tr>
</tbody>
</table>

* Patients presenting for outpatient catheterization and discharged the same day.

Table 4: Clinical outcomes
Hemostasis classification from Leodrad [6]

<table>
<thead>
<tr>
<th>Outcome</th>
<th>TR Band</th>
<th>TRB-PRUF</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any hematoma</td>
<td>9 (10.2%)</td>
<td>16 (17.2%)</td>
<td>0.33</td>
</tr>
<tr>
<td>Grade I (5cm)</td>
<td>8</td>
<td>12</td>
<td>0.64</td>
</tr>
<tr>
<td>Grade II (5-10cm)</td>
<td>1</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>Radial artery occlusion</td>
<td>0</td>
<td>0</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Table 3:
Procedural Outcomes

<table>
<thead>
<tr>
<th></th>
<th>TR Band</th>
<th>TRB-HOMP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to TRB deflation (mean ± SD)</td>
<td>160 ± 43</td>
<td>43 ± 14</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>N=87</td>
<td>N=32</td>
<td></td>
</tr>
<tr>
<td>Time to discharge* (mean ± SD)</td>
<td>201 ± 55</td>
<td>150 ± 63</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>N=61</td>
<td>N=57</td>
<td></td>
</tr>
</tbody>
</table>

* Patients presenting for outpatient catheterization and discharged the same day.

Table 4: Clinical outcomes
Hemostasis classification from LeBrait et al [6]

<table>
<thead>
<tr>
<th>Outcome</th>
<th>TR Band</th>
<th>TRB-HOMP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any hematoma</td>
<td>9 (10.5%)</td>
<td>16 (17.2%)</td>
<td>0.33</td>
</tr>
<tr>
<td>Grade I (0-5cm)</td>
<td>8</td>
<td>12</td>
<td>0.46</td>
</tr>
<tr>
<td>Grade II (5-10cm)</td>
<td>1</td>
<td>4</td>
<td>0.37</td>
</tr>
<tr>
<td>Radial artery occlusion</td>
<td>0</td>
<td>0</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Table 3:
Procedural Outcomes

<table>
<thead>
<tr>
<th></th>
<th>TR Band</th>
<th>TRB-PTCI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to TRB deflation (mean ± SD)</td>
<td>160 ± 43</td>
<td>43 ± 14</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>N=87</td>
<td>N=82</td>
<td></td>
</tr>
<tr>
<td>Time to discharge* (mean ± SD)</td>
<td>201 ± 55</td>
<td>150 ± 43</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>N=61</td>
<td>N=57</td>
<td></td>
</tr>
</tbody>
</table>

* Patients presenting for outpatient catheterization and discharged the same day.

Table 4: Clinical outcomes
Hemostasis classification from Levering [8]

<table>
<thead>
<tr>
<th>Outcome</th>
<th>TR Band</th>
<th>TRB-PTCI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any hematoma</td>
<td>9 (10.3%)</td>
<td>16 (17.7%)</td>
<td>0.33</td>
</tr>
<tr>
<td>Grade I (5-10cm)</td>
<td>8</td>
<td>12</td>
<td>0.46</td>
</tr>
<tr>
<td>Grade II (15-25cm)</td>
<td>1</td>
<td>4</td>
<td>0.37</td>
</tr>
<tr>
<td>Radial artery occlusion</td>
<td>0</td>
<td>0</td>
<td>0.92</td>
</tr>
</tbody>
</table>
PRACTICAL Trial
568 patients 20 minutes vs 60 minutes compression

- 22% of 20 minute compression group patients had rebound bleeding

- 36% of rebound bleeding patients developed RAO

- Rebound bleeding was the ONLY independent predictor of RAO

Lavi S..... Bagur R JAHA 2018
Heparin Dose matters!

Bernat I et al Am J Cardiol
Higher Dose of Heparin

Best Practices not followed

3.5 h hemostatic compression

Hahalis G et al, JACC Interv 2018
Is more anticoagulation more effective?

Pacchione A, Reimers B et al. Circ Interv 2019
Rebound Bleeding = Revengeful Pressure

RAO
MEMORY Trial

Figure 3 Incidence of Efficacy (Radial Artery Occlusion) and Safety (Hematoma and Bleeding) Study Endpoints

Incidence of radial artery occlusion, hematoma, and bleeding at 24 h post-procedure in patients with mechanical (red bars) and manual (blue bars) hemostasis.

Petrogiou, Ziakas et al. JACC Interv 2018

13 + 8 minutes
Radio-Ulnar circuit
Radio-Ulnar circuit
Radio-Ulnar circuit
Ulnar compression

UA compressed

UA released

Pancholy S et al, J Inv Cardiol 2015
Radial VTI with Ulnar compression

VTI (m.s²)

1900n1900ral

1900n1900ral 8.4

1900n1900ral

1900n1900ral

Baseline Ulnar...

P < 0.0001

N = 150

Pancholy S et al, J Inv Cardiol 2015
PROPHET-II
(Preservation of Radial Artery Occlusion – Prophylactic Hyperperfusion Evaluation Trial)

Figure 2: CONSORT Diagram

Enrollment
- Assessed for eligibility (n=4238)
 - Excluded (n=1238)
 - Ad hoc PCI (n=818)
 - Previous ipsilateral TRA (n=80)
 - Barbeau pattern D (n=211)
 - Warfarin therapy (n=110)
 - No ulnar pulse (n=19)

Randomized (n=3000)

Allocation
- Group 1 (n=1497)
 - Patent hemostasis
- Group 2 (n=1503)
 - Patent hemostasis with ulnar compression

Follow-up
- Lost to follow-up (n=35)
 - 4 mortalities, 31 unreachable
- Lost to follow-up (n=34)
 - 2 mortalities, 32 unreachable

Analysis
- Analyzed (n=1462)
- Analyzed (n=1469)

Pancholy S et al, JACC Interv 2016
Figure 3: Incidence of Radial Artery Occlusion

Pancholy S et al, JACC Interv 2016
PROPHET-II
(Prevention of Radial Artery Occlusion – Prophylactic Hyperperfusion Evaluation Trial)

Figure 1: Ipsilateral Ulnar Compression During Radial Artery Hemostasis
Observational Data

ULnar Artery Transient Compression Facilitating Radial Artery Patent Hemostasis (ULTRA): A Novel Technique to Reduce Radial Artery Occlusion After Transradial Coronary Catheterization

Michael J. Koutouzis, MD, PhD; Christos D. Maniotis, MD, PhD; Grigorios Avdikos, MD; Andreas Tsoumeleas, MD; Constantinos Andreou, MD, PhD; Zenon S. Kyriakides, MD, PhD
Table 3. Radial artery patency after intervention.

<table>
<thead>
<tr>
<th></th>
<th>Conventional Method (n = 121)</th>
<th>ULTRA Method (n = 119)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pulsation</td>
<td>15 (12.4%)</td>
<td>3 (2.5%)</td>
<td>.01</td>
</tr>
<tr>
<td>No duplex flow</td>
<td>6 (5.0%)</td>
<td>0 (0.0%)</td>
<td>.01</td>
</tr>
</tbody>
</table>

Data presented as number (%).
VS
287 patients referred for TRA

253 patients randomized

TR Band (Group 1, N = 126)

Vasoband (Group 2, N = 127)

Radial Compression x 120 minutes

Ipsilateral ulnar Compression x 1 hour

Patent Hemostasis (Radial Patency at 15 minutes)

Primary Endpoint

Radial Artery Occlusion At Discharge

• 4 on warfarin
• 29 with previous Ipsilateral TRA
• 3 needed heparin infusion
• 2 had persistent plethysmographic Waveform after radial and ulnar occlusion

Excluded Patients
Patent Hemostasis

<table>
<thead>
<tr>
<th>TR Band</th>
<th>VasoBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.8</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Radial Artery Occlusion

<table>
<thead>
<tr>
<th>TR Band</th>
<th>VasoBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>
• Dual bladder band with ipsilateral ulnar compression for the first 60 minutes, increases the ability to achieve “Patent Hemostasis”

AND

• Lowers the incidence of RAO at the time of discharge

WITHOUT the need for frequent radial patency monitoring
Have we made a difference?
Early Late

Prophylactic Ulnar Compression

NR NR 0

Cubero Bernat PROPHET-II ULTRA

Early Late

Patent Hemostasis

Sammar... Plante
Thank you