Robotics in PCI

Samir B. Pancholy, MD, FAHA, FACC, FSCAI
Professor of Medicine
Geisinger Commonwealth School of Medicine
Program Director
The Wright Center for Graduate Medical Education,
Scranton, PA
First Robotic Catheter-based Procedures

Rafael Beyar, MD

Figure 3. The operator control unit, composed of a computer, a control console, and a joystick. The screen has various control features, including precise positioning and discrete wire rotation options. Safety "STOP" button is emphasized in red.
PRECISE TRIAL

• Demonstrated feasibility of Robotic PCI in Non-Type C lesions
Hardware + Set-up

- Cassette
- Console
Robotic PCI in Complex CAD

Mahmud et al JACC Interv 2017

TABLE 3 Procedural Characteristics and Clinical Outcomes of Both the Study (Robotic) and Control (Manual) Groups in the Entire Study Cohort

<table>
<thead>
<tr>
<th>Access site</th>
<th>Robotic Group (n = 108)</th>
<th>Manual Group (n = 226)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral</td>
<td>88%</td>
<td>87.6%</td>
<td>0.93</td>
</tr>
<tr>
<td>Radial</td>
<td>12%</td>
<td>12.4%</td>
<td>0.93</td>
</tr>
<tr>
<td>Stents deployed</td>
<td>1.59 ± 0.79</td>
<td>1.54 ± 0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>Lesions treated</td>
<td>1.47 ± 0.69</td>
<td>1.49 ± 0.67</td>
<td>0.78</td>
</tr>
<tr>
<td>Procedure time (min:s)</td>
<td>44:30 ± 26:04</td>
<td>36:34 ± 23:03</td>
<td>0.002</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>18.2 ± 10.4</td>
<td>19.2 ± 11.4</td>
<td>0.39</td>
</tr>
<tr>
<td>Dose-area product (cGy · cm²)</td>
<td>12,518 ± 15,970</td>
<td>14,048 ± 18,437</td>
<td>0.045</td>
</tr>
<tr>
<td>Contrast volume (ml)</td>
<td>183.4 ± 78.7</td>
<td>202.5 ± 74</td>
<td>0.031</td>
</tr>
<tr>
<td>MACE*</td>
<td>0.9%</td>
<td>0.9%</td>
<td>1.00</td>
</tr>
<tr>
<td>CK-MB >3 times ULN</td>
<td>5.6%</td>
<td>7.5%</td>
<td>0.51</td>
</tr>
</tbody>
</table>

TABLE 4 Procedural Characteristics and Clinical Outcomes of the Propensity-Matched Subgroup

<table>
<thead>
<tr>
<th>Procedure time (min:s)</th>
<th>Robotic Group (n = 82)</th>
<th>Manual Group (n = 82)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.59 ± 26.14</td>
<td>34.01 ± 17.14</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>17.5 ± 9.9</td>
<td>17.1 ± 9.2</td>
<td>0.93</td>
</tr>
<tr>
<td>Dose-area product (cGy · cm²)</td>
<td>13,762 ± 17,907</td>
<td>12,393 ± 17,321</td>
<td>0.61</td>
</tr>
<tr>
<td>Contrast volume (ml)</td>
<td>183.9 ± 77.2</td>
<td>195.1 ± 65.4</td>
<td>0.22</td>
</tr>
<tr>
<td>MACE*</td>
<td>0.0%</td>
<td>1.2%</td>
<td>1.00</td>
</tr>
<tr>
<td>CK-MB >3 times ULN</td>
<td>4.9%</td>
<td>4.9%</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Robotic-PCI
APEX EXPERIENCE

>250 Cases
Cross-over to h-PCI in 7 Cases
Hybrid procedure in 11 Cases
Technical Failure in 2 Cases
Type of lesions tested with Robotic PCI

• Simple

• Complex
 • Type C
 • CTO
 • STEMI PPCI

• Peripheral
Case: 1, LCX-OM Bifurcation stenting
Case: 2, LAD diffuse long segment stenosis
Case: 3, RCA CTO
Case: 4, Acute IWMI
Case: 5, RCA dissection
Case: 6, SVG-PDA ISR
Case: 7, renal artery stenting
REMOTE PCI TELEROBOTIC PCI

WIRELESS REMOTE PCI
32 Kilometers (20 Miles) away from the patient via 100 Mbps connection
PATIENT’s VIEW
REMOTE-PCI

• Access to emergent PCI in remote areas

• Acute neurointervention and trauma intervention
Thank You